106 research outputs found

    Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels

    Get PDF
    Motivation: High-throughput sequencing has made the analysis of new model organisms more affordable. Although assembling a new genome can still be costly and difficult, it is possible to use RNA-seq to sequence mRNA. In the absence of a known genome, it is necessary to assemble these sequences de novo, taking into account possible alternative isoforms and the dynamic range of expression values

    Representing and decomposing genomic structural variants as balanced integer flows on sequence graphs

    Get PDF
    The study of genomic variation has provided key insights into the functional role of mutations. Predominantly, studies have focused on single nucleotide variants (SNV), which are relatively easy to detect and can be described with rich mathematical models. However, it has been observed that genomes are highly plastic, and that whole regions can be moved, removed or duplicated in bulk. These structural variants (SV) have been shown to have significant impact on the phenotype, but their study has been held back by the combinatorial complexity of the underlying models. We describe here a general model of structural variation that encompasses both balanced rearrangements and arbitrary copy-numbers variants (CNV). In this model, we show that the space of possible evolutionary histories that explain the structural differences between any two genomes can be sampled ergodically

    Pebble and Rock Band: Heuristic Resolution of Repeats and Scaffolding in the Velvet Short-Read de Novo Assembler

    Get PDF
    BACKGROUND: Despite the short length of their reads, micro-read sequencing technologies have shown their usefulness for de novo sequencing. However, especially in eukaryotic genomes, complex repeat patterns are an obstacle to large assemblies. PRINCIPAL FINDINGS: We present a novel heuristic algorithm, Pebble, which uses paired-end read information to resolve repeats and scaffold contigs to produce large-scale assemblies. In simulations, we can achieve weighted median scaffold lengths (N50) of above 1 Mbp in Bacteria and above 100 kbp in more complex organisms. Using real datasets we obtained a 96 kbp N50 in Pseudomonas syringae and a unique 147 kbp scaffold of a ferret BAC clone. We also present an efficient algorithm called Rock Band for the resolution of repeats in the case of mixed length assemblies, where different sequencing platforms are combined to obtain a cost-effective assembly. CONCLUSIONS: These algorithms extend the utility of short read only assemblies into large complex genomes. They have been implemented and made available within the open-source Velvet short-read de novo assembler

    SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Illumina's second-generation sequencing platform is playing an increasingly prominent role in modern DNA and RNA sequencing efforts. However, rapid, simple, standardized and independent measures of run quality are currently lacking, as are tools to process sequences for use in downstream applications based on read-level quality data.</p> <p>Results</p> <p>We present SolexaQA, a user-friendly software package designed to generate detailed statistics and at-a-glance graphics of sequence data quality both quickly and in an automated fashion. This package contains associated software to trim sequences dynamically using the quality scores of bases within individual reads.</p> <p>Conclusion</p> <p>The SolexaQA package produces standardized outputs within minutes, thus facilitating ready comparison between flow cell lanes and machine runs, as well as providing immediate diagnostic information to guide the manipulation of sequence data for downstream analyses.</p

    A Unifying Model of Genome Evolution Under Parsimony

    Get PDF
    We present a data structure called a history graph that offers a practical basis for the analysis of genome evolution. It conceptually simplifies the study of parsimonious evolutionary histories by representing both substitutions and double cut and join (DCJ) rearrangements in the presence of duplications. The problem of constructing parsimonious history graphs thus subsumes related maximum parsimony problems in the fields of phylogenetic reconstruction and genome rearrangement. We show that tractable functions can be used to define upper and lower bounds on the minimum number of substitutions and DCJ rearrangements needed to explain any history graph. These bounds become tight for a special type of unambiguous history graph called an ancestral variation graph (AVG), which constrains in its combinatorial structure the number of operations required. We finally demonstrate that for a given history graph GG, a finite set of AVGs describe all parsimonious interpretations of GG, and this set can be explored with a few sampling moves.Comment: 52 pages, 24 figure

    Ensembl regulation resources

    Get PDF
    New experimental techniques in epigenomics allow researchers to assay a diversity of highly dynamic features such as histone marks, DNA modifications or chromatin structure. The study of their fluctuations should provide insights into gene expression regulation, cell differentiation and disease. The Ensembl project collects and maintains the Ensembl regulation data resources on epigenetic marks, transcription factor binding and DNA methylation for human and mouse, as well as microarray probe mappings and annotations for a variety of chordate genomes. From this data, we produce a functional annotation of the regulatory elements along the human and mouse genomes with plans to expand to other species as data becomes available. Starting from well-studied cell lines, we will progressively expand our library of measurements to a greater variety of samples. Ensembl's regulation resources provide a central and easy-to-query repository for reference epigenomes. As with all Ensembl data, it is freely available at http://www.ensembl.org, from the Perl and REST APIs and from the public Ensembl MySQL database server at ensembldb.ensembl.org.Database URL: http://www.ensembl.org.Wellcome Trust grant: (WT098051); National Human Genome Research Institute grants: (U41HG007234, 1U01 HG004695); Biotechnology and Biological Sciences Research Council grant: (BB/L024225/1); European Molecular Biology Laboratory; European Union’s Seventh Framework Programme; European Research Council

    Meraculous: De Novo Genome Assembly with Short Paired-End Reads

    Get PDF
    We describe a new algorithm, meraculous, for whole genome assembly of deep paired-end short reads, and apply it to the assembly of a dataset of paired 75-bp Illumina reads derived from the 15.4 megabase genome of the haploid yeast Pichia stipitis. More than 95% of the genome is recovered, with no errors; half the assembled sequence is in contigs longer than 101 kilobases and in scaffolds longer than 269 kilobases. Incorporating fosmid ends recovers entire chromosomes. Meraculous relies on an efficient and conservative traversal of the subgraph of the k-mer (deBruijn) graph of oligonucleotides with unique high quality extensions in the dataset, avoiding an explicit error correction step as used in other short-read assemblers. A novel memory-efficient hashing scheme is introduced. The resulting contigs are ordered and oriented using paired reads separated by ∼280 bp or ∼3.2 kbp, and many gaps between contigs can be closed using paired-end placements. Practical issues with the dataset are described, and prospects for assembling larger genomes are discussed

    Genome-wide SNP identification by high-throughput sequencing and selective mapping allows sequence assembly positioning using a framework genetic linkage map

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Determining the position and order of contigs and scaffolds from a genome assembly within an organism's genome remains a technical challenge in a majority of sequencing projects. In order to exploit contemporary technologies for DNA sequencing, we developed a strategy for whole genome single nucleotide polymorphism sequencing allowing the positioning of sequence contigs onto a linkage map using the bin mapping method.</p> <p>Results</p> <p>The strategy was tested on a draft genome of the fungal pathogen <it>Venturia inaequalis</it>, the causal agent of apple scab, and further validated using sequence contigs derived from the diploid plant genome <it>Fragaria vesca</it>. Using our novel method we were able to anchor 70% and 92% of sequences assemblies for <it>V. inaequalis </it>and <it>F. vesca</it>, respectively, to genetic linkage maps.</p> <p>Conclusions</p> <p>We demonstrated the utility of this approach by accurately determining the bin map positions of the majority of the large sequence contigs from each genome sequence and validated our method by mapping single sequence repeat markers derived from sequence contigs on a full mapping population.</p

    LOCAS – A Low Coverage Assembly Tool for Resequencing Projects

    Get PDF
    Motivation: Next Generation Sequencing (NGS) is a frequently applied approach to detect sequence variations between highly related genomes. Recent large-scale re-sequencing studies as the Human 1000 Genomes Project utilize NGS data of low coverage to afford sequencing of hundreds of individuals. Here, SNPs and micro-indels can be detected by applying an alignment-consensus approach. However, computational methods capable of discovering other variations such as novel insertions or highly diverged sequence from low coverage NGS data are still lacking. Results: We present LOCAS, a new NGS assembler particularly designed for low coverage assembly of eukaryotic genomes using a mismatch sensitive overlap-layout-consensus approach. LOCAS assembles homologous regions in a homologyguided manner while it performs de novo assemblies of insertions and highly polymorphic target regions subsequently to an alignment-consensus approach. LOCAS has been evaluated in homology-guided assembly scenarios with low sequence coverage of Arabidopsis thaliana strains sequenced as part of the Arabidopsis 1001 Genomes Project. While assembling the same amount of long insertions as state-of-the-art NGS assemblers, LOCAS showed best results regarding contig size, error rate and runtime. Conclusion: LOCAS produces excellent results for homology-guided assembly of eukaryotic genomes with short reads and low sequencing depth, and therefore appears to be the assembly tool of choice for the detection of novel sequenc
    corecore